Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Ling Yang,^a* Yu-Qing Shang,^b Guan-Ping Yu^b and Guo-Dong Si^b

College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.041 wR factor = 0.113 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystall

4-(4-Methylbenzylideneamino)-3-[(1*H*-1,2,4-triazol-1-yl)methyl]-1*H*-1,2,4-triazole-5(4*H*)-thione monohydrate

In the title compound, $C_{13}H_{15}N_7OS$, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 88.69 (3) and 2.94 (2)°, respectively. Inter- and intramolecular hydrogen-bond and π - π stacking interactions stabilize the structure. Received 23 November 2005 Accepted 28 November 2005 Online 7 December 2005

Comment

Recently, compounds containing a 1*H*-1,2,4-triazole group have attracted much interest because they are well known as efficient fungicides in pesticides and they exhibit good plantgrowth regulatory activity for a wide variety of crops (Xu *et al.*, 2002). In addition, amine- and thione-substituted triazoles have been studied as anti-inflammatory and antimicrobial agents (Eweiss *et al.*,1986; Awad *et al.*, 1991). In a search for new triazole compounds with better biological activity, the title compound, (I), was synthesized. We report here the crystal structure of (I).

Compound (I) crystallizes as a monohydrate. The bond lengths and angles are generally normal in the triazole rings (Xu *et al.*, 2005). The molecule exists in the thione tautomeric form, with an S=C distance of 1.664 (2) Å, which indicates substantial double-bond character for this bond (Allen *et al.*, 1987). The planes C11–C13/N5/N6/N7 and C1–C8 make angles of 88.69 (3) and 2.9 (2)°, respectively, with the thione-substituted triazole plane C9/C10/N2–N4/S1. The crystal structure of (I) is stabilized by weak intra- and intermolecular hydrogen bonds and π - π stacking interactions. The π - π stacking interactions involve the thione-substituted triazole ring (C9/C10/ N2–N4) *R*1 and the benzene ring (C2–C5/C7/C8) *R*2. The distance between the centroids of rings *R*1 and *R*2 (at 1 – *x*, -*y*, 1 – *z*) is 3.668 (2) Å.

Experimental

A mixture of 4-amino-3-(1,2,4-triazol-1-yl)-1*H*-1,2,4-triazole-5(4*H*)-thione (0.02 mol) and 4-methylbenzaldehyde (0.02 mol) was refluxed

organic papers

at 391 K for 20 min in glacial acetic acid. The mixture was then filtered and crystallized from ethanol to afford the compound 5-[(1H-1,2,4-triazol-1-yl)methyl]-4-(4-methylbenzylideneamino)-2H-1,2,4-triazole-3(4H)-thione (5.32 g, yield 89%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature. The water in the structure is derived from the undried ethanol solvent.

 $D_x = 1.335 \text{ Mg m}^{-3}$

Cell parameters from 2352

 $0.22 \times 0.20 \times 0.12 \text{ mm}$

3234 independent reflections 2039 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections $\theta = 2.8-25.0^{\circ}$

 $\mu = 0.22~\mathrm{mm}^{-1}$

T = 294 (2) K

Block, yellow

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 26.4^{\circ}$

 $l = -9 \rightarrow 8$

 $h = -10 \rightarrow 8$

 $k = -31 \rightarrow 26$

Crystal data

 $\begin{array}{l} C_{13}H_{13}N_7S \cdot H_2O \\ M_r = 317.38 \\ \text{Monoclinic, } P2_1/c \\ a = 8.2900 \ (14) \\ \mathring{A} \\ b = 24.778 \ (5) \\ \mathring{A} \\ c = 7.7083 \ (14) \\ \mathring{A} \\ \beta = 93.966 \ (3)^{\circ} \\ V = 1579.6 \ (5) \\ \mathring{A}^3 \\ Z = 4 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.952, T_{max} = 0.974$ 8843 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0501P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.2737 <i>P</i>]
$wR(F^2) = 0.113$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.004$
3234 reflections	$\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ \AA}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

S1-C9	1.664 (2)	N3-N4	1.372 (2)
N1-C1	1.269 (3)	N5-N6	1.351 (3)
N1-N2	1.394 (2)		
C1-N1-N2	119.51 (17)	C10-N3-N4	104.05 (16)
C10-N2-C9	108.34 (15)	N5-C11-C10	109.92 (17)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline O1 - H1A \cdots N3^{i} \\ O1 - H1B \cdots N7^{ii} \\ N4 - H4A \cdots O1^{iii} \\ C1 - H1 \cdots S1 \end{array} $	0.86 (2) 0.86 (2) 0.90 (2) 0.93	2.06 (3) 1.95 (3) 1.81 (2) 2.51	2.912 (3) 2.800 (2) 2.699 (2) 3.255 (2)	171 173 167 137

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) x, y, z + 1.

All C-bound H atoms were placed in calculated positions, with C– H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ for the aryl and methylene H atoms, and $1.5U_{eq}(C)$ for the methyl H atoms. The position and isotropic displacement parameters of the N-bound and O-bound H atoms were refined freely.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine

Figure 1

View of (I), with displacement ellipsoids for non-H atoms drawn at the 40% probability level.

Figure 2

A packing diagram of the title compound, viewed down the c axis. Hydrogen bonds are shown as dashed lines.

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Awad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol. 51, 483–486.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem. 23, 1451– 1458.
- Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Xu, L. Z., Yu, G. P., Si, G. D., Shang, Y. Q., Li, W. H. & Hou, B. R. (2005). Acta Cryst. E61, 03408–03409.
- Xu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). J. Chem. Res. Chin. Univ. 18, 284–286.